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ABSTRACT 

A framework to compare and evaluate 

diagnosis algorithms (DAs) has been created 

jointly by NASA Ames Research Center, Palo 

Alto Research Center, and Delft University of 

Technology. In this paper, we present the 

second implementation of this framework in a 

competition called DXC’10. The overall goal 

of this competition is to evaluate the 

performance of different diagnostic methods.  

In order to accurately mimic diagnostic 

technology use in a real-world context, we 

have defined diagnostic problems driven by 

use cases representing different roles of 

diagnosis results. In the end, the competition 

pitted seven DAs competing in two diagnostic 

problems. The paper presents the systems used 

in DXC’10, a description of faults and data 

sets used for each diagnostic problem, a listing 

of participating DAs, the performance metrics 

and results computed from running the DAs 

with the framework, and an analysis of the 

results. 

1 INTRODUCTION 

The problem of detecting and isolating faults (also 

called diagnosis) in physical systems has led to various 

solution approaches including expert, model-based, 

data-driven, and stochastic reasoning methods. 

However, there have been few efforts to evaluate and 

compare these different approaches in a standardized 

way. NASA Ames Research Center (ARC), Palo Alto 

Research Center (PARC), and Delft University of 

Technology decided to combine efforts to create a 

generalized framework that would establish a common 

platform to evaluate and compare diagnosis algorithms 

(Kurtoglu et al., 2009a). The objectives for developing 

this framework are to accelerate research in theories, 

principles, and computational techniques for 

monitoring and diagnosis of complex systems, to 

encourage the development of software platforms that 

promise more rapid, accessible, and effective 

maturation of diagnostic technologies, and to provide a 

forum that can be utilized by algorithm developers to 

test and validate their technologies on real-world 

physical systems. 

 The First International Diagnostic Competition 

(DXC’09) was the first implementation of the above-

mentioned framework (Kurtoglu et al., 2009b). The 

overall goal of the competition was to systematically 

evaluate diagnostic technologies and to produce 

comparable performance assessments for different 

diagnostic methods. DXC’09 pitted 12 diagnosis 

algorithms competing in 3 different tiers on 2 different 

tracks (industrial and synthetic). In each tier, the DAs 

were provided a description of the system being 

diagnosed and sample data sets from nominal and 

faulty runs.  Several metrics that covered timing, 

technical, and computational performance were 

computed and a single final ranking score was 

calculated to determine the winners in each tier. 

 Continuing the effort, we conducted the Second 

International Diagnostic Competition (DXC’10) this 

year. Based on the feedback from last year’s 
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participants we instituted several changes. The primary 

change was in the evaluation criteria. Last year we used 

several metrics which were consolidated into a single 

ranking score. In order to accurately represent real-life 

problems, we defined use cases indicating what the role 

of the diagnosis results would be. We chose a decision 

support use case where the diagnosis result would be 

used to decide what recovery action(s) should be 

performed in order to minimize mission costs, which 

may include loss of mission objectives and/or loss of 

vehicle. We also added incipient faults and intermittent 

faults to make the problems more challenging. This 

paper describes the competition and presents the 

results. 

 Section 2 gives an introduction the DXC 

framework. Section 3 describes the diagnostic problems 

that were presented to the competitors. Section 4 lists 

which kinds of faults were injected. Section 5 explains 

how the evaluation was done to decide winners. Section 

6 presents the results including metrics used in last 

year’s competition.  

2 DXC FRAMEWORK 

The DXC framework allows systematic evaluation and 

comparison of diagnostic algorithms under identical 

experimental conditions. The key components of this 

framework include representation languages for the 

physical system description, sensor data and diagnosis 

results, a runtime architecture for executing DAs and 

diagnostic scenarios, and an evaluation component that 

computes performance metrics based on the results 

from diagnostic algorithm execution. 

 We provide a summary of the DXC framework 

(DXF) in this paper with emphasis on additions for 

DXC’10 and refer the reader to (Kurtoglu et al., 2009a; 

Feldman et al., 2010) for additional details. Figure 1 

shows an overview of the DXC software components 

and the primary information flows. All communication 

is ASCII-based, and all the modules communicate via 

TCP ports by using a simple message-based protocol. 

Next, we provide a brief description of each software 

component. 

 

Scenario Loader: Executes the Scenario Data Source, 

Recorder, and Diagnostic Algorithm. Scenario Loader 

ensures system stability and clean-up upon scenario 

completion. This is the main entry point for performing 

a diagnostic experiment. 

 

Scenario Data Source: Provides scenario data from 

previously recorded datasets. The provenance of the 

data (whether hardware or simulation) depends on the 

system in question. A scenario dataset contains sensor 

readings, commands (note that the majority of classical 

MBD literature does not distinguish commands from 

observations), and fault injection information (to be 

sent exclusively to SR). Scenario Data Source 

publishes data following a wall-clock schedule 

specified by timestamps in the scenario files. 

 

Scenario Recorder: Receives fault injection data and 

diagnosis data into a scenario results file. The results 

file contains a number of time-series which are used by 

the evaluation module for the computation of metrics. 

Scenario Recorder is the main timing authority, i.e., it 

timestamps each message upon arrival before recording 

it to the results file. 

 

Diagnosis Algorithm: A DA receives sensor and 

command data, performs diagnosis, and sends the 

diagnosis results back. As long as the DAs comply to 

the provided API, there are no restrictions on a DA; for 

example, a DA may read precompiled data, or use 

external (user supplied) libraries, etc. 

 

Diagnostic Oracle: Provides a querying capability to 

the DAs in one of two ways: 1) It takes a diagnostic 

output produced by a DA and returns the lowest cost 

action(s) associated with the provided diagnosis, or 2) it 

takes a diagnostic output and specific actions produced 

by a DA and returns the corresponding cost. 

 

Evaluator: Takes scenario result file and applies 

metrics to evaluate DA performance. The metrics and 

evaluation procedures are detailed in Section 5. 

 

 Figure 2 shows a diagnostic session sequence 

diagram. Note the introduction in this year’s 

competition of the oracle and the messages with which 

a DA requests recovery information/costs and 

recommends recovery actions. 

3 DIAGNOSTIC PROBLEMS 

Three diagnostic problems were announced for 

DXC’10, two industrial track problems and one 

synthetic. We report only on the industrial track 

diagnostic problems (DP-I, DP-II) in this paper since 

no teams participated in the synthetic track. 

 The hardware system for DXC’10 diagnostic 

problems I and II is the Electrical Power System 

testbed in the ADAPT lab at NASA Ames Research 

Center (Poll et al., 2007). The ADAPT EPS testbed 

provides a means for evaluating diagnostic algorithms 

through the controlled insertion of faults in repeatable 

failure scenarios. The EPS testbed incorporates low-

cost commercial off-the-shelf (COTS) components 

connected in a system topology that provides the 

functions typical of aerospace vehicle electrical power 

systems: energy conversion/generation (battery 

chargers), energy storage (three sets of lead-acid 
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batteries), power distribution (two inverters, several 

relays, circuit breakers, and loads) and power 

management (command, control, and data acquisition). 

 The EPS delivers AC (Alternating Current) and DC 

(Direct Current) power to loads, which in an aerospace 

vehicle could include subsystems such as the avionics, 

propulsion, life support, environmental controls, and 

science payloads. A data acquisition and control system 

commands the testbed into different configurations and 

records data from sensors that measure system 

variables such as voltages, currents, temperatures, and 

switch positions. 

 We have created two systems from the same 

physical testbed, ADAPT-Lite and ADAPT, for use in 

diagnostic problems I and II, respectively.  

 

ADAPT-Lite: Includes a single battery, two AC loads 

and one DC load as shown in Figure 3. The initial 

configuration for ADAPT-Lite has all relays and circuit 

breakers closed and no nominal mode changes are 

commanded during the scenarios. Hence, any 

significant changes in sensor values may be correctly 

attributed to faults injected into the scenarios. ADAPT-

Lite is restricted to single faults. For this year’s 

competition we introduce simplified representations of 

drift and intermittent faults in addition to the abrupt 

parametric (abrupt changes in parameter values) and 

discrete (unexpected changes in system state) faults 

used in the First International Diagnostic Competition. 

Figure 4 illustrates the parametric fault profiles used in 

ADAPT-Lite.    

 

ADAPT: Includes all batteries and loads in the EPS as 

shown in Figure 5. The initial configuration for 

ADAPT has all relays open and nominal mode changes 

are commanded during the scenarios. The commanded 

configuration changes result in adjustments to sensor 

values as well as transients which are nominal and not 

indicative of injected faults. Multiple faults may be 

injected in ADAPT. However, the fault types are 

restricted to abrupt parametric and discrete, similar to 

last year’s competition. 

  

 DXC’10 introduces multi-rate data of 1, 2, and 10 

Hz for both systems (rather than all data at 2 Hz) and 

includes fewer sensors than DXC’09. Reducing the 

sensor set resulted in ambiguity groups, for which it 

was not possible to isolate the injected fault. For 

example, in diagnostic problem I there were four 

ambiguity groups: (i) AC483 failed off and EY272 

stuck open, (ii) FAN416 failed off and EY275 stuck 

open, (iii) DC485 failed off and EY284 stuck open, and 

(iv) INV2 failed off and CB262 failed open. In each 

case however, the recovery action is the same for both 

faults in the ambiguity group. Ruling out guessing, a 

perfect DA would have non-zero classification errors 

because of the ambiguity groups. Table 1 summarizes 

the main characteristics of the diagnostic problems, 

which we describe next. 

3.1 Diagnostic Problem I 

Diagnostic problem I mimics the use of the ADAPT-

Lite system in a single-string UAS (Unmanned Aircraft 

System) mission. The primary objective of the 

diagnostic algorithm in this operational scenario is to 

provide decision support to a remote pilot or an 

autonomous controller by making an “abort" 

recommendation. An abort recommendation would 

result in aborting the mission and landing the UAS 

vehicle.  

 This problem has a non-redundant EPS 

configuration which is supplying power to vehicle 

systems and payloads necessary for successful mission 

completion. There is only one path from one power 

source to two AC loads and one DC load. There are 

two possible recommendations for the nominal and 

single-fault scenarios in this diagnostic problem: 

“none” (or no-abort) and “abort”.  

 The correct recommendation for a scenario depends 

on the injected failure mode and, for certain failure 

modes, the fault parameters. Any failure which cuts off 

power to any of the three loads results in an abort 

recommendation. Other failure modes may lead to 

Table 1: Diagnostic problem characteristics 

Aspect DP-I DP-II 

system ADAPT-

Lite 

ADAPT 

operational scenario single-string 

UAS 

mission 

redundant 

systems UAS 

mission 

diagnostic use case abort rec. fault recovery 

rec. 

#comps 25 96 

#modes 102 306 

initial relay state closed open 

initial circuit breaker 

state 

closed closed 

nominal mode changes no yes 

multiple faults no yes 

fault 

types 

offset yes yes 

drift 

(incipient) 

yes no 

intermittent 

offset 

yes no 
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degraded performance which can be tolerated if the 

fault magnitude is below some threshold. For these 

scenarios, giving the correct recommendation requires 

isolating the failure mode and estimating the fault 

parameter(s).   

3.2 Diagnostic Problem II 

Diagnostic problem II mimics the use of the ADAPT 

system in a redundant systems UAS mission. The 

primary objective of the diagnostic algorithm in this 

operational scenario is to provide decision support to a 

remote pilot or an autonomous controller by making 

recommendations for fault recovery actions. 

 This problem has redundant power configurations of 

the EPS system that support mission and vehicle 

critical loads. There are multiple possible paths from 

power sources to the loads. Some loads are critical to 

vehicle operations, some are critical for mission 

success, and others are considered non-critical. For 

example, a vehicle critical load may be an avionics 

computer, while a mission critical load may be a sensor 

payload such as an IR camera.  

 Nominal configurations for this problem provide 

power to five critical loads and four non-critical loads. 

The system employs passive redundancy for the critical 

load functions such that there are two identical loads 

for each critical function located on opposite load 

banks. Only one of two redundant loads will be on in 

any given scenario and will remain on for the duration 

of a nominal scenario while the non-critical loads may 

be turned on and off.  

 The correct recommendation for a scenario restores 

power to all critical loads, which may require multiple 

recovery actions, or suggests an abort when it is not 

possible to do so.  

4 FAULT INJECTION AND SCENARIOS 

Experimental scenarios of approximately four minutes 

in length were acquired using the ADAPT EPS testbed 

for diagnostic problems I and II. The testbed allows for 

the repeatable injection of faults into the system in 

three ways: hardware-induced faults (e.g., turning off 

inverters, tripping circuit breakers, manipulating loads); 

software-induced faults (e.g., sending extraneous relay 

commands or blocking intended relay commands); 

introduction of faulty components (e.g., inserting a 

burned out light bulb). The first two methods were used 

for DXC’10.  

 The ADAPT-Lite experiments for DP-I include 20 

nominal and 134 single-fault scenarios. The parametric 

fault profiles illustrated in Figure 4 are injected for 

sensor faults as well as AC and DC load faults. For the 

latter, a programmable electronic load was used to vary 

the AC and DC load resistances. Of the 154 scenarios, 

65 are “abort” and 89 are “none” cases. Table 2 

summarizes the faults and scenarios used for DP-I. 

 

 The ADAPT experiments for DP-II include 20 

nominal and 100 single, double, and triple-fault 

scenarios. The scenarios required 0 to 4 recovery 

commands or the abort command as shown in Table 3. 

The faults used for DP-II are summarized in Table 4. 

 

 

 

 

Table 2: Diagnostic problem I faults 

Type Subtype Fault # abort / 

none 

nominal  no fault 20 0 / 20 

battery  degraded 1 0 / 1 

circ. 

breaker 

 failed open 4 4 / 0 

inverter  failed off 1 1 / 0 

load 

fan 

failed off 1 1 / 0 

over speed 1 1 / 0 

under speed 1 0 / 1 

AC load 

resistance 

offset 

8 4 / 4 

resistance 

drift 

8 4 / 4 

intermittent 

res. offset 

7 3 / 4 

failed off 1 1 / 0 

DC load 

resistance 

offset 

8 4 / 4 

resistance 

drift 

9 4 / 5 

intermittent 

res. offset 

8 4 / 4 

failed off 1 1 / 0 

relay  stuck open 5 5 / 0 

sensor 

position stuck 2 0 / 2 

current, 

temp., 

voltage 

offset 20 8 / 12 

stuck 8 4 / 4 

drift 20 8 / 12 

intermittent 

offset 

20 8 /12 

  Totals: 154 65 / 89 
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5 EVALUATION 

Diagnostic algorithms are ranked using a decision cost 

metric, Mdc. The decision cost is the cost incurred had 

the DA’s recommendation(s) been acted upon. 

Additionally, we compute the metrics used in DXC’09 

to evaluate how changes introduced in DXC’10 affect 

DA performance. 

 For DP-I, the two main categories of costs are cost 

of losing the vehicle and cost of not completing the 

mission. In this use case the DA is only responsible for 

deciding if a mission should be aborted or not. Hence 

there are 4 outcomes (2 answers from the DA versus 2 

actual situations). Let the cost of losing the mission be 

cmission and the cost of losing the vehicle be cvehicle.  

Table 5 computes the costs incurred in each of the 4 

possible outcomes.  

 
 For DP-II, in addition to cmission and cvehicle, there is a 

cost associated with performing each recovery action, 

caction. When a DA recommends a set of recovery 

actions, it automatically incurs the cost of performing 

those actions. In addition, it may incur the cost of 

losing the mission or losing the mission and vehicle if 

the recovery actions do not mitigate the effects of the 

faults. Note that for DP-II we treat the abort action as 

incurring a cost equal to the cost of the mission, so a 

correct recommendation may have non-zero cost, in 

contrast to DP-I. 

 For both DP-I and DP-II evaluations, cmission is set to 

25, cvehicle is set to100, and each action, caction is set to 1. 

The metrics used for evaluating DAs in DXC’09 are 

summarized in Table 6. Please see (Kurtoglu et al., 

2009; Feldman et al., 2010) for detailed definitions and 

related discussion. Note that DXC’09 metric Mia has 

been renamed Merr in the table below. The metrics in 

the table are per scenario metrics. To calculate “per 

system” metrics, an unweighted average is taken over 

all scenarios and indicated with an overbar. 

 
 

 Diagnostic algorithms were evaluated using the 

DXC framework on two computers with identical 

hardware (Intel
®
 XEON™ 2x2.20Ghz, 3.60 GB RAM), 

one running Windows™ and the other Linux. The 

choice of target operating system was left to DA 

developers. 

Table 4: Diagnostic problem II faults 

Type Subtype Fault # 

nominal  no fault 20 

battery  degraded 4 

circ. 

breaker 

 failed open 22 

inverter  failed off 9 

load 

basic failed off 8 

fan 

failed off 3 

over speed 4 

under speed 2 

light bulb failed off 18 

pump 
failed off 4 

flow restricted 2 

relay 
 stuck closed 4 

 stuck open 37 

sensor 

position stuck 10 

current, 

temp., 

voltage 

offset 38 

stuck 38 

  Totals: 223 

 

Table 3: Diagnostic problem II scenario 

distribution, fault cardinality, and recovery 

commands 
  #Recovery Commands (A=abort) 

Card #scn 0 1 2 3 4 A 

no fault 20 20 0 0 0 0 0 

single 

fault 

31 12 11 7 1 0 0 

double 

fault 

35 11 4 7 6 2 5 

triple 

fault 

34 10 4 8 6 1 5 

Totals: 120 53 19 22 13 3 10 

 

Table 6: DXC'09 metrics summary 

Metric Name Class 

Mfd fault detection time detection 

Mfn false negative scenario detection 

Mfp false positive scenario detection 

Mda scenario detection accuracy detection 

Mfi fault isolation time isolation 

Merr classification errors isolation 

Mcpu CPU load computation 

Mmem memory load computation 

 

Table 5: Diagnostic problem I decision costs, Mdc 

          Actual Case 

DA rec. 

abort non-abort 

abort 0 cmission 

non-abort cmission + cvehicle 0 

 



21
st
 International Workshop on Principles of Diagnosis, 2010 

 

 6 

6 RESULTS 

Using the evaluation approach described in the 

previous section, we computed metrics and rankings for 

7 diagnostic algorithms that participated in the Second 

International Diagnostic Competition.   

6.1 Diagnostic Algorithms 

The teams that participated in diagnostic problems I 

and II are listed in Table 7. In what follows we provide 

a brief description of each DA. 

 
1. AdaptedFACT: Uses a model-based diagnosis 

approach. The front end nominal model was 

mostly static with a more dynamic battery model. 

Incoming data for each sensor along with 

predictions from the model are combined with a 

Generalized Likelihood Ratio detector that is 

designed to detect a Gaussian shift-in-mean. The 

fault isolation uses pre-derived fault signatures (the 

signatures were generated by inspecting the model 

and system equations), much like the 

TRANSCEND approach (Mosterman and Biswas, 

1999). The signatures are combined with special 

condition checking as well as heuristics, to 

differentiate between partial signatures. 

2. HyDE-A: HyDE (Hybrid Diagnosis Engine) is a 

model-based diagnosis engine that uses 

consistency between model predictions and 

observations to generate conflicts which in turn 

drive the search for new fault candidates 

(Narasimhan and Brownston, 2007). A HyDE 

model may use Boolean, discrete, real, or interval-

valued variables to describe the behavior of a 

system. HyDE-A uses discrete models of the 

system and a discretization of the sensor 

observations for diagnosis. 

3. ProADAPT: Uses a probabilistic approach to 

diagnosis, based on Bayesian networks (BNs). 

Real and virtual sensors are represented in a BN, as 

are health nodes which provide the health status of 

the sensors and components that are diagnosed. 

Off-line, the BN is compiled to an equivalent 

arithmetic circuit. On-line, the arithmetic circuit is 

used to quickly compute, based on sensor inputs, 

the posterior distribution over the health nodes, 

which is used to compute diagnoses. (Ricks and 

Mengshoel, 2009; Ricks and Mengshoel, 2010)  

4. QED: A model-based diagnosis system based on 

qualitative event-based fault isolation. Statistically 

significant deviations of measured from model-

predicted values imply the presence of faults. 

These deviations are abstracted into symbolic 

event-based descriptions of fault-induced behavior, 

which are compared to predicted event sequences 

to isolate faults. Fault identification uses 

quantitative methods to compute fault parameters 

and further refine fault hypotheses (Daigle and 

Roychoudhury, 2010). 

5. SystemicsC: A multi-modal reasoning system that 

combines Case-Based Reasoning (CBR) with 

Model-Based Reasoning (MBR) in the context of 

diagnostic problem solving process. SystemicsC is 

based on the principles of the General Diagnostic 

Engine (GDE) as described by (de Kleer and 

Williams, 1987). Contradictions (conflicts) 

between the simulated and the observed behavior 

are used to generate hypotheses about possible 

causes for the observed behavior. The failure 

modes of the model components together with 

previously recorded faults are then used to verify 

the hypotheses and speed up the diagnostic 

process. 

6. TARDEC: A real-time, two-tier system which first 

utilizes statistical models to detect and categorize 

sensor faults, then aggregates all detected sensor-

level faults and associated characteristics and, 

through a rule-based expert system, identifies the 

electrical system component most likely to have 

produced those faults, as well as estimates of the 

significant parameters of its failure. 

7. TRT4ADAPT: A model-based diagnostic system 

based on a casual dependency graph of fault causes 

and fault effect propagation paths. It is a 

combination of the Testability Engineering and 

Maintenance System (TEAMS) software created 

by Qualtech Systems Incorporated (QSI) and 

custom wrapper code that facilitates the exchange 

of data between test results and the real-time 

reasoning engine. It uses a set of custom designed 

tests that facilitates the transformation of a 

graphical flow model of the system into a matrix 

representation describing the relationship between 

faults and test points for a given mode of the 

system. This representation contains the basic 

information needed to interpret test results and 

diagnose failures during operations (Wilson and 

Kurtoglu, 2010). 

Table 7: DXC'10 participating DAs 

DA DP Algorithm Type 

AdaptedFACT I Model-based 

HyDE-A I, II Model-based 

ProADAPT I, II Probabilistic 

QED I Model-based 

SystemicsC I Model-based 

TARDEC I Rule-based 

TRT4ADAPT II Flow-models 
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6.2 Diagnostic Problem I 

The results for DP-I are shown in Table 8; diagnostic 

algorithm TARDEC had the lowest cost and is the 

winner. For comparison, a DA that always recommends 

abort would have received a cost of 89 * 25 = 2225; a 

DA that always recommends no-abort would have 

received a cost of 65 * 125 = 8125. HyDE-A used the 

same model as last year, which did not classify drift, 

intermittent, offset or stuck faults (except when the 

value went to 0) so it is not surprising that it is close to 

a no-abort DA. 

 We show the breakdown of costs by fault type for 

each DA in Figure 6. Offset, drift, and intermittent 

faults include hardware (AC483, DC485) and sensor 

(e.g., IT267, IT281, etc.) fault injection scenarios. 

Category “other” includes battery, circuit breaker, 

inverter, fan, and AC and DC load failed-off fault 

scenarios. It is interesting to note that TARDEC did not 

incur any costs in the category “other”. While it did not 

classify all faults in this category correctly (see Figure 

7), the misclassifications resulted in the correct 

recommendation.  

 
 The metrics used for scoring DAs in the First 

International Diagnostic Competition are computed and 

shown in Table 10. Similar to last year, no DA 

dominates all metrics. The fault detection and isolation 

times are noticeably higher than last year, primarily 

because of the need to accumulate more evidence in the 

case of drift and intermittent fault types. Diagnostic 

algorithm QED had much smaller CPU load compared 

to the other algorithms.  

 Note that the ranking of the DAs with respect to the 

detection accuracy metric exactly matches, from top to 

bottom, the ranking by the cost metric. The DA with 

the best detection accuracy, TARDEC, had the lowest 

cost. Furthermore, TARDEC also had the fewest 

classification errors. It is logical that the algorithm 

which most often correctly detects and classifies the 

injected fault in the scenario would receive the proper 

fault response from the Oracle, and consequently have 

the lowest cost. 

 Figure 7 shows the breakdown of classification 

errors by fault type. In a scenario, the number of 

classification errors is the number of misclassified 

components. Figure 8 shows the contribution to 

classification errors from scenario detection categories 

false positive (FP), false negative (FN), and true 

positive (TP). DAs HyDE and TARDEC had no false 

positives. We noticed some scenarios in which DAs 

SystemicsC and TARDEC had false negatives and a 

CPU load of 0 for the same scenarios. We were not 

able to investigate this more thoroughly prior to 

publication; this could indicate some errors in the 

evaluation. 

 In general, drift faults presented the most difficulty 

to DAs. In some drift fault scenarios the fault was 

isolated to the incorrect component or incorrect failure 

mode, which resulted in a recovery recommendation 

that was not appropriate for the actual injected fault. In 

other drift fault scenarios, the isolation was correct but 

the estimation of the slope or the fault injection time 

was inaccurate. In particular, SystemicsC appears to 

have consistently overestimated the slope for positive 

drift faults, most likely the outcome of a simple 

calculation error.  

 Sensor ST516 proved especially difficult to 

diagnose correctly due to the low signal-to-noise ratio 

resulting from the quantized sensor readings. This 

sensor was responsible for many of the DA false 

positive scenarios, especially for QED, in which the 

incorrect diagnosis was ST516=stuck. Stuck faults were 

incorrectly indicated by a few DAs for other sensors as 

well. This likely reflects slight differences between the 

training data set and competition data set, which 

resulted in thresholds for counts of consecutive 

identical sensor values being too small. 

 Diagnostic algorithm ProADAPT had some 

calculation or output error which set the offset 

parameter to 0 for all resistance offset faults, resulting 

in several missed aborts.  

6.3 Diagnostic Problem II 

The results for DP-II are shown in Table 9; diagnostic 

algorithm ProADAPT had the lowest cost and is the 

winner. The minimum possible score for DP-II is 364, 

the sum of the recovery action costs for all scenarios. 

The breakdown of cost by the number of actions 

required to restore critical functionality (or abort in the 

case critical functionality cannot be restored) is shown 

in Figure 9. Note that the costs for the category “0 

cmd” are negligible but non-zero (HyDE-A = 10, 

ProADAPT = 11, TRT4ADAPT = 3). 

 
 Additional DA performance metrics are shown in 

Table 11. Similar to the first diagnostic problem, the 

Table 9: Diagnostic problem II scores 

DA Cost Rank 

HyDE-A 3471 3 

ProADAPT 1590 1 

TRT4ADAPT 1676 2 

 

Table 8: Diagnostic problem I scores 

DA Cost Rank 

AdaptedFACT 2250 2 

HyDE-A 6950 6 

ProADAPT 4925 5 

QED 2350 3 

SystemicsC 2400 4 

TARDEC 2000 1 
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DA with the lowest cost, ProADAPT, also had the best 

detection accuracy and fewest classification errors.  

 The fact that isolation time can be less than 

detection time for DP-II, as it is for HyDE-A, requires 

explanation. There is one detection time possible per 

fault scenario, which is measured from the time the first 

fault is injected to the time when the DA sets the fault 

detection Boolean high. For multiple fault scenarios, 

we have allowed for more than one isolation time as 

follows. Suppose in a double fault scenario the first 

fault is injected at 100 seconds and the second fault is 

injected at 200 seconds. Furthermore, the DA detects a 

fault at 110 seconds. By performing a string 

comparison of the candidate set, it is determined that 

the DA converges on a diagnosis at 115 seconds. It then 

changes its candidate set after the second fault is 

injected and converges to a new diagnosis at 201 

seconds, which persists to the end of the scenario. 

There are two isolation times defined for this scenario, 

15 seconds (115 – 100) and 1 second (201 – 200). An 

average of all isolation times is taken over the scenario, 

in this case 8 seconds. The detection time is 10 

seconds. Hence, in this hypothetical scenario, the 

isolation time is less than the detection time.    

 Figure 10 shows the contribution to classification 

errors from scenario detection categories false positive 

(FP), false negative (FN), and true positive (TP). We 

noticed a few scenarios in which the DA had no 

classification errors but yet incurred a cost of losing the 

vehicle and mission. Upon closer inspection, these 

scenarios terminated after the allotted time and before 

the DA could communicate the recovery actions to the 

Scenario Recorder. Allowing more time for the 

interactions between DA, Oracle, and Scenario 

Recorder should solve this problem. We also observed 

that repeated queries to the Oracle results in system lag.  

7 CONCLUSION 

We presented the implementation of the Second 

International Diagnostic Competition, DXC’10. We 

noted recommendations from the first competition and 

tried to make changes accordingly. Identifying realistic 

use case scenarios was difficult and we spent a lot of 

time discussing different possibilities. This represents 

just one use case among many different applications of 

diagnosis results.  

 We hope that this work can be continued moving 

forward by identifying new physical systems and new 

diagnostic problems. The DXC framework provides an 

easy way to create an evaluation platform for new 

problems. Our sincere hope is that the framework is 

adopted by a growing number of people and applied to 

a wide variety of physical systems including diagnosis 

algorithms from several different research 

communities. The long-term goal is to create a database 

of performance evaluation results which will allow 

system designers to choose the appropriate DA for their 

system given the constraints and metrics in their 

application.  
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Figure 1: DXF run-time architecture. 

 

 
Figure 2: Diagnostic session sequence diagram. 
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Figure 3: ADAPT-Lite system for diagnostic problem I. 
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Figure 4: Diagnostic problem I fault profiles. 
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Figure 5: ADAPT system for diagnostic problem II. 
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Figure 6: DP-I cost breakdown by scenario fault type. 
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Figure 7: DP-I classification error breakdown by scenario fault type. 
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Figure 8: DP-I classification error breakdown by scenario detection type. 
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Figure 9: DP-II cost breakdown by scenario recovery type. 
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Figure 10: DP-II classification error breakdown by scenario detection type. 

 

 


